

F Prime: An Open-Source Framework for Small-Scale Flight Software Systems

Robert Bocchino, Timothy Canham, Garth Watney, Leonard Reder, and Jeffrey Levison

32nd Annual Small Satellite Conference August 9, 2018 Utah State University

Copyright © 2018 California Institute of Technology Government sponsorship acknowledged

Introduction

- Developing flight software (FSW) is challenging
- Especially so for small spacecraft
 - Small budgets
 - Ambitious goals
- Challenges include
 - Compressed schedules (especially test)
 - Inadequate resources
 - Poorly-specified interfaces
 - Under-specified and changing requirements

Introduction

Developing Flight Software (FSW) for Small Spacecraft

- Options
 - Develop FSW from scratch
 - 2. Adapt FSW from a previous mission
 - Use a multi-mission FSW framework
- We contend that option (3) is best
 - Option (1) is too expensive and/or compromises quality
 - Option (2) can work, but it is not ideal
 - Unless FSW is designed for reuse, it is difficult to reuse
 - Developers must re-engineer it for the new mission

Overview

- Free and open-source; developed at JPL
- Tailored to small-scale systems
 - CubeSats, SmallSats, instruments
- Comprises several elements
 - 1. A component-based architecture
 - 2. A C++ framework providing core capabilities
 - 3. Modeling tools for specifying models and generating code
 - 4. A collection of ready-to-use components
 - 5. Testing tools for unit and integration testing
- Runs on a wide range of hardware platforms
- Runs on several OSs (e.g., Linux, Mac OS, VxWorks)

https://github.com/nasa/fprime

Architecture

- Based on components, ports, and topologies
 - Component: A unit of FSW function (like a C++ class)
 - Port: A point of connection between component instances
 - Topology: A directed graph of instances and connections
- Component instances
 - Communicate only through ports
 - Have no compile-time dependencies on other components
- Port connections
 - Are typed and statically specified
 - May be synchronous or asynchronous

Provides structure to FSW applications

Enables automatic checking of correctness properties

Enhances reusability of FSW components

C++ Framework

August 9, 2018 SmallSat Conference 6 jpl.nasa.gov

Modeling and Code Generation (Components)

MagicDraw Model

XML Specification


```
<component name="CmdDispatcher"</pre>
            kind="active"
            namespace="Svc">
  <import_port_type>
  Fw/Cmd/CmdPortAi.xml
  </import_port_type>
  <comment>
  A component for dispatching commands
  </comment>
  <ports>
    <port name="compCmdSend"</pre>
           data_type="Fw::Cmd"
           kind="output"
           max_number="$CmdDispatcherCommandPorts">
           <comment>Command dispatch port</comment>
    </port>
  </ports>
</component>
```


C++ Base Class

August 9, 2018 SmallSat Conference 7 jpl.nasa.gov

Modeling and Code Generation (Topologies)

MagicDraw Model

XML Specification

Ground Dictionaries


```
<assembly name="Ref">
  <import_component_type>
  Svc/CmdDispatcher/CmdDispatcherComponentAi.xml
  </import_component_type>
  <import_component_type>
  Svc/CmdSequencer/CmdSequencerComponentAi.xml
  </import_component_type>
  <instance namespace="Svc"</pre>
             name="cmdDisp"
             type="CmdDispatcher"
             base id="121"
             base id window="20"/>
  <instance namespace="Svc"</pre>
             name="cmdSeq"
             type="CmdSequencer"
             base id="541"
             ase_id_window="23"/>
  <connection name="Connection37">
     <source component="cmdSeq"</pre>
              port="cmdResponseOut"
              type="CmdResponse"
              num="0"/>
     <target
              component="cmdDisp"
              port="compCmdStat"
              type="CmdResponse"
              num="0"/>
  </connection>
</assembly>
```

Python code for F Prime ground data system

Mission-specific ground data system formats

August 9, 2018 SmallSat Conference 8 jpl.nasa.gov

Reusable Components

- F Prime comes with over 20 reusable components (and counting)
- The components provide many standard FSW behaviors
 - Commanding
 - Events and telemetry
 - Ground interface
 - File system
 - Memory management
 - Generic data storage
 - Parameters (updatable constants)
 - Time
 - Health
 - Assertions and fatal events
- Fully unit-tested and ready to go

Unit Testing

Provides a simple solution for testing F Prime components

August 9, 2018 SmallSat Conference 10 jpl.nasa.gov

Ground Data System and Integration Testing

Provides a simple solution for testing F Prime deployments

August 9, 2018 SmallSat Conference 11 jpl.nasa.gov

The Ground Data System GUI

Commanding View

Telemetry View

Strip Chart View

Experience with F Prime

Missions and Projects

- We have used F Prime on several space missions
 - ISS RapidScat scatterometer (flew)
 - ASTERIA CubeSat (flying now)
 - Mars Helicopter (in development)
 - Lunar Flashlight CubeSat (in development)
 - Near Earth Asteroid (NEA) Scout CubeSat (in development)
- We have used F Prime for research and education
 - JPL R&D project on autonomous FSW
 - Collaborations with several universities
- F Prime can reduce the cost of developing FSW
 - Facilitate sharing and reuse between projects
 - Let developers focus on mission-specific code

Enhancements in Progress

Making F Prime Better

- Modeling and code generation
 - New input language and visualizer for F Prime models
 - It will be free and easier to use than MagicDraw/SysML
- Testing of F Prime components
 - Tools for automatically picking test inputs
 - Tools for generating tests from high-level specifications
 - Integrated model checking with Spin
- Ground data system
 - XTCE ground dictionaries
 - Mobile user interface
 - Improved server using ZeroMQ

Conclusion

- Developing FSW for small spacecraft is hard
- F Prime can help
 - Architecture
 - Direct code reuse
 - Development ecosystem
- F Prime is a flight-proven technology
- Several enhancements are in progress

https://github.com/nasa/fprime

jpl.nasa.gov